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We investigate theoretically polyelectrolyte bridging interactions on the two-body level. The model
system is composed of two macroions with two oppositely charged flexible chains. The electrostatic
interactions are treated on the Debye-€kil level. The formal level of the theory is provided by

the Feynman—Kleinert variational method generalized to include also self-interactions between
polyelectrolyte segments. The variational equations are shown to exhibit two solution branches
corresponding tetrongandweakcoupling, whereas conformations of the chain can be described as
weaklyor strongly paired We investigate the effective pair interaction between the macroions in the
parameter space and comment on the relevance of the calculation for bridging interactions in
experimental context. €003 American Institute of Physic§DOI: 10.1063/1.1570400

I. INTRODUCTION sured second virial coefficient. This is the first point of de-
parture of this work.

Polyelectrolytes are ubiquitous in colloidal systems and  The second one is a very peculiar interaction in poly-
play a fundamental role in determining the interactions beelectrolyte systems, where long charged polymers can medi-
tween as well as stability and structure of various moleculaate interactions between macroions of opposite chéRgé.
assemblies. Their effect on colloidal interactions has been 11 and references thergifThe termbridging interactionsis
studied and exploited in various technological contexts rangusually applied to this situation where a single chain can
ing from the paper industry to the pharmaceutical indu?stry_ adsorb to different macroions and via its connectivity and
It seems, however, that their most basic role is played in th€lasticity mediate attractive interactions between them.
biological context where their importance can be hardlyThese interactions have been studied intensively both
overestimated. They are an essential and fundamental corfxperimentally” as well as theoreticalfy’° Surface force
ponent of the cellular environment and make their mark in its2PParatus and atomic force microscopy have provided direct
every structural and functional aspéct. data on the separation dependence of the bridging interaction

The behavior of polyelectrolytes in biological context between macroscopic surfaces with polyelectrolyte chains ei-

has without any doubt been one of the focuses of soft mattet'€" _grfgted or in chemical equilibrium with a bulk
research for quite a few years néWhe intense work on the solution:“ Theoretical work has added a clear mesoscopic

interactions and mesophase behavior of the most studief%lcwre foorl thle pgd?|ggtr|1nter§ct|?n bfethen r;acroslcopt)m stur;
polyelectrolyte in the biological context if not in general— aces and elucidated the efiects ot sait and honelectrostatic

: . L ) xcluded volume effects on the strength and range of this
'.e., DNA—has elucidated many fascinating physical aSpeCtﬁ']teraction?‘"*‘lﬁSince it is based on sometimes severe model

of this molecule and the repercussions that they have on the

. . : . or formal restrictions, there is no single theoretical approach
structure and function of biological matfefhe mesoscopic : . )
) . .~ that is able to account for all experimentally observed details
interactions between many DNA molectleand elastic

" ¢ sinale DNA lecules in_ diff ¢ soluti or is able to explore in comparable details all the regions of
properties of singie molecules n adifierent SOIULON w0 o rameter phase spdtdhe fact that the effects of the
conditions have been measured directly and are understoo

fund | ohvsical level. Not all biological polvel ridging interaction between small macroibhas opposed
on a fundamental physical level. Not all biological polyelec-, macroscopic surfacEshave been studied to a much

trolytes or all solution conditions have been or indeed can bgy 5 jer extent thus makes a strong point for its re-evaluation.
studied at quite the same level of detail. Sometimes a lot eSS 1o main motivation for this task is recent experiments
information than direct measurement of molecular interacy, the second virial coefficient of the nucleosomal core par-
tions at all macromolecular densities is experimentally availyicies (NCP) in the low-density regime at various solution
able. Studies at low macromolecular densities in systemsgynditionsl®’ NCPs represent the lowest level of the chro-
where polyelectrolyte behavior is expected to show its marknatin organization in eucaryotes and have recently been re-
usually only lead to second virial coefficients and not com-splved at an atomic resolutidfi.They consist of a histone
plete interaction curve:'® This is not due to poorly de- protein octamer core with 146 bp of DNA tightly wrapped
signed experimental setup, but shows a rather fundamentalound it, giving it an approximate cylindrical shape of a
limit in the amount of information that can be provided by radius~55 A, a height of~57 A, and a structural charge of
experiments at these conditions. In this situation one has te-—250. This complex is stable in an agueous solution from
rely heavily on different models of the mesoscopic interac-1 to 750 mM monovalent salt ionic strendthThe charged
tion potential and the way they transpire through the meahistone N-termini or N-tails can desorb from this complex
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and basically play the role of grafted flexible polyelectrolyteintermacroion separation as a function of system parameters
chains of an approximate total charge-ef-90. They remain  such as the amount of fixed charge on the macroions, the
essentially adsorbed to the DNA segment of the NCP at lowength of the polyelectrolyte chain, and the screening length
ionic strength, but tend to assume a more extended confoof the intervening bathing solution. We will discuss the rami-
mation as the ionic strength is increas@@he application of ~ fications of these results for the salt dependence of the sec-
classical® and manometrf® osmometry provided data on ond virial coefficient and point to the possible shortcomings
the osmotic pressure of the NCP in NaCl solutions of vari-of the calculation and guess about a way to possibly circum-
able ionic strength from which the second virial coefficientvent them. We will finally comment on the significance of
was deduced quite accuratéfit was demonstrated that the the present calculation for the understanding of the bridging
second virial coefficient is a nonmonotonic function of theinteraction in the NCP solution system.

ionic strength, and a plausible though tentative hypothesis

was given that the nonmonotonicity of the second virial co-||. MODEL

efficient might be due to the bridging interaction mediated by

the extended N-tails of the NCP%A very similar nonmono- The model system that we take as the starting point of
tonic dependence of the second virial coefficient was seefRY’ the_orehcgl _mvestlgatlon of the brldgl_ng mte_ractlon IS
also in apoferritin solutions where a bridging interpretation isduit¢ Simple: it is composed of two spherical point macro-

hard to envisior ions with M negative fixed charges plus two oppositely
Motivated by this important experimental result and its

charged chains, each witthmonomers, one per each mono-
tentative interpretation, we embarked on a detailed study of!

er. The pair interaction potential(r’,r) between all the
the interaction between charged macroions with grafted o charges in the system will be taken of the screened Coulomb
positely charged polyelectrolyte tails as a function of the

(Debye—Hiekel) form!
ionic strength of a monovalent bathing salt solution. The eg e Klr=r'|
level of the theoretical calculation had to be considered thati(r’,r)
would allow for a straightforward evaluation of the second

virial coefficient, being an integral of the underlying interac- ee

tion potential, and its dependence on the ionic strength. Als@" €lse u(k)= ceo(K2+K2)’ @)

since the N-tails in the motivating experiment cannot be con- ) ] )
sidered as infinitely long—i.e., there are finite-size effectd réal or Fourier space, the form we will need later ens

that need to be taken properly into account—it seems that {1€ inverse Debye lengtig, is the elementary charge, one
mean-field(MF) theory of bridging interactions as formu- PE' €ach Kuhn's length, and the rest of the notation is stan-
lated for the case of interacting charged planes and based .rd. Obviously, c.ounterlgns are no_t explicitly included in
the ground-state dominance an$&# cannot be simply this model. The interaction potential between the poly-

implemented to the present case. Finite-size effects are quif‘éeCtmete and macroion charges is assumed of a similar

difficult to deal with on the MF level, especially if one needs orm. viz.,

to evaluate the interaction potential between macroions in a eg, e 'l e, eHrrl

very large(ideally infinite) range of separations. In view of bexd(1)= Ameey |—1y  Ameeq |1—1y e

all this we formulated a variatiorfdl two-particle (two- 2)

macroiorn) theory of the bridging interaction that starts from . . .
e ) : wherer, r,, etc., are the positions of macroions and their

an explicit mesoscopic polyelectrolyte model and includes .

; ) o charges aree;=e,=Megy, etc. Our model is thus a very

the interactions of the polyelectrolyte chain with the macro- traightforward generalization of manv macroions of the

ions, the interactions of the chain with itself and, connectedrsnodgI used in gl electrolvie adsor tio):] studds

with it, the effect of the electrostatic stiffening of the chain, POy Y P '

. . . We will use a standar@Edward$ modef* for the poly-
as well as the configurational entropy of the chain. In some ; . o
electrolyte chain where the mesoscopic Hamiltonian has con-

respec ts the th‘?my proposed here could be wcae?\ged UPON 83 dhutions from chain connectivity, interactions between the
variational version of the Asakura—Oosawa thedryhe fi- . . . .
segments of the chain and the interaction with an external

nite size of the chain can be relatively straightforwardly dealtf. : ; .
) . ; . . ield due to the presence of two macroions. It is written as
with on this level of the theory and gives rise to important

features of the two-particle bridging interaction that are lost 3 2 (N
in the simplest, ground-state dominance formulation of the ~ BHLri(n)]= ﬁzl fo if(n)dn
MF theories.
The organization of the paper is as follows: We will first 1 2 N [N
describe the model and give an introduction to a modified + 5521 f f u(ri(n’),rj(n))dndn’
variational Feynman—Kleinert approach to the polyelectro- =L J0 S0
lyte chains. We will derive the main equations and solve 2 N
them numerically for different conditions. We will show that +ﬁ2 dexdri(n))dn, (3
in general the bridging interactions for this model system =1 Jo
comes in two varieties that we dub tlsrong andweak  wheref is the Kuhn’s length and(r’,r) is the pair interac-
coupling limits. The form of the total interaction between thetion potential, whileg,,(r) is the external interaction poten-
macroions will be obtained numerically for all values of the tial. The indiced, j stand for the two polyelectrolyte chains.

- 4meey |r—r’|
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FeynmanrKleinert variational method® and its application

to the case of self-interacting polymer chains in the bulk has
been discussed in detail elsewhérdt was shown that it
captures all the salient features of polyelectrolyte behavior in
the bulk.

The details of the variational approach are as folléivs:
the two polyelectrolyte chains are treated as Gaussian blobs
positioned at their centers-of-masg; andr,, respectively.
The width of the Gaussian blobs is determined variationally
from the strength of the external fields as well as self-
interactions along the chaffi.The Gaussian blobs thus be-
have as effective “particles” with finite extensions. In this
FIG. 1. Schematic representation of the model and the nature of the varidespect we can claim that the present theoretical framework
tional solutions. LHS: the strong-coupling solution branch. The conforma—represents a kind of Asakura—Oosawa theory where the ef-

tion of the chain is determined mostly by the interaction with the two mac-tastive size of the macroions is determined variationally The
roions. It can be either in the weaklyppe) or strongly (lower drawing '

paired configuration, depending on the separations between the macroiorién@l statistical integral is then Obtained by integ_rating over
The attractive bridging interaction is strongest in the strongly paired conthe two centers-of-massg; andr,, i.e., the coordinates of
figuration. RHS: the weak-coupling solution branch. The conformation ofthe effective(Asakura—OosaV\)a“particles,” or indeed by

the chain is determined mostly by the self-interactions of the chains. They. .. . . oy .
are in the weakly paired configuration for any separation between the mat):f-mdmg the configuration of the centers-of-mass that gives

roions. On approach the interpenetration of the monomer cldhes‘co-  the largest contribution to this integrdl.
ronas”) leads to prevalently repulsive interactions. Note that the macroions  For the variational ansatz corresponding to two effective

are treated as point particles in the calculation and that their size is thugsgyssian chains we will chose a genera| harmonic Hamil-
r in this drawing. .
exaggerated in this drawing tonian of the forrﬁl

2
Figure 1 schematically presents the mesoscopic model on ﬁHo[fi(n)]ZizE J'Nfiz(n)dn
which the present evaluation of the bridging interactions is 26°=1 Jo

based. Clearly, the nonpairwise additive effects, such as 3 \

bridging between multiple macroions mediated by a single + —E é-z(fm)f [r.(n)—r]2dn
chain, have been completely disregarded in this model. The 2= 0

finite macroion size effects have also been disregarded. Also,
the model is based on a linear thedipebye—Huekel) of +ANL(No1.T 02, @)
Coulomb interactions and thus cannot capture nonlinearitieg;ii, periodic boundary conditions far(n). This ansatz is

such as charge renormalization or counterion condensatiogbvious|y still dependent ony; for i=1,2, which stand for
It can, however, take into account the electrostatic stiffeninqhe centers-of-mass  of Ithe two, ,chains i.erg
il . ]

of the chain as well as the_finite cha_in size effects. _ =(UN)SNri(n)dn, as well as the functions;(ro) and
The grafting of the chains to their respective MAacroions, (. ¢ v which will be determined variationally.

is not taken into account explicitly on the Hamiltonian level. 1 o"tarm with¢%(ro) obviously represents an external
. . . . I I

First of all, in this model system the effects of grafting arey,, . mqnic potential, centered o , which acts either to con-
small or indeed negligiblé to the extent that they are always fine or expand the chain, depending on its sign. A simple
overpowered by the much stronger electrostatic interaCtior‘?i'miting form of ¢2 can be derived only for the case of a
This would of course not be the case for, e.g., electrostaligj, 1o " self-interacting chain and is given in Ref. 21. In Eq.
brushes where grafting has to enter the description of th?4) this term was taken with a positive sign, but we will
chain already at the Hamiltonian level. The grafting of theargue later that it can as well be negative. The term

cham; is on_Iy taken into ac.count via their Cemer'Of'maSS,BNE(rm,roz) simply represents the value of this harmonic

coordinates in the way explained later. external potential at the centers-of-mass of both chains.
Again, a simple limiting form ofBNL can be derived only

IIl. VARIATIONAL ANSATZ AND FORMALISM for the case of a single self-interacting chais will be-

Si he i . ith | field I h come clear when we proceed, both quantities depend in a
>Ince t € Interactions wit externa. I€lds as well as t ecomplicated way on the interactions between the monomers
self-interactions along the polymer chains are highly nonlin

. . i 2 =1 "as well as on the interactions between the monomers and
ear in terms of their spatial dependence, the statistical int

) T ) : xternal macroions.
gral corresponding to Eq3) is in general impossible to

: N The statistical integral for the variational ansatz can be
evaluate analytically and is difficult to evaluate even aP-gptained in the following forn?

proximately. Instead of taking recourse to a numerical ap-

proximation, we will rather introduce a harmoniariational

ansatz>?that will make the evaluation of the statistical in- ﬂo(N)Zj D[fl(n)]f D[r,(n)]e” Arlri(m]

tegral straightforward. The parameters of the variational an-

satz will be chosen SO as to minimize the upper bound of the _ 4% Br e BFolrorron). ®)
exact free energy. This procedure is generally known as the 01+ 102
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The two polymer chains are thus represented as two effective i ,
Gaussian “particles” with an effective Hamiltonian given by 7ai2(f—f'):f ﬁgPaf(k)u(k)e'k'('_r ) (12
Fo(ror:fop). The details of the implementation of the

Feynman—Kileinert "’.‘”55& for (selfjinteracting polymer the self-interactions of the chains correspond to the terms
chains have been given befdfeand we will rely on the W, and are given by

formal developments described in that work. First of all, let '
us introduce the radius of gyration defined as

4“. 2N)
5.

d3k )
.=Jw|ﬁ)af(k)| u(k), (13

a (rOI 3Nf <(r (n) I’OI 2>dn_ 3§
' 6) and finally the interactions between the two chains that can

be derived in the form
where £(x) = cothx—1/x is the standard Langevin function.

One can then derivé that minimization of the upper bound i
of the variational free energy with respect to the function =~ Wa, a,(.I")= f (z—ﬂ_)gpai(k)u(k)pag(—k)e' (r=rt)
L(ro1.7o2) leads to the following equation: (14)

BNL(Fo1,T00) = — 52 ZA(ro)Na2(rq) This is all stralghtforward gene.rallzatlon'of the varlgtlonal
i= theory set up previously for a single ch&hThe functions
Zi(roi) are next obtained by minimizing the upper bound to

+BW(TorTo2), (" the exact free energy with respectap, leading to
with
roi)N= W(rgq,r 15
ﬂW(rmaroz):Bf A3 (1) p(I.T01.702) §,( 2 B a’ (To1 To2)- (19
1 3 3, The effective center-of-mass free energy of the two polymer
+ Eﬁf f d°rd”r’ p(r,ro1,ro2) chains is finally given by the expression

Xu(r,r")p(r',ros,ro)- (8) N
2 sinh——

2

W(rq1.T o2 Obviously represents the total interaction free en- 3
(ou, " 02) y rep ,3—7:o(r01,f02):3i21 log——— 7N _52
- i =

ergy, due to self-interactions as well as interactions with ex-

ternal fields, of a smeared monomer cloud with a Gaussian o
density distribution.p(r,rp;,rg2) stands for the combined
monomer density function of the two chains and has the +BW(ro1,r02)
form =BF2(ro1,r02) + BW(ro1,r02), (16)
p(r1r011r02):pai(r=r01)+pag(rerZ)i (9) .
where we separated out the harmonic part of the free energy
where for each of the chains the monomer density distribuBZ,(rq;,rg2). The first two terms of this variational free
tion function is given by energy represent the entropy of the Gaussian chain, and the
2 last one is due to the interactions with the external fields and
pa2(r,Ig) = sze p— “__rgil self-interactions. These are the basic equations of the
(2may) 23; Feynman—Kleinert variational theory as applied to the self-
K2 interacting polyelectrolyte chains. They are still quite com-
or else p2(k)=Nexp— — (100  Plicated because of the dependence on the center-of-mass
' coordinates o, and the final integration over these variables

in Eq. (5).

If there are no external fields that break the translational
symmetry of the problem, it can be easily s€ethat the
dependence ong vanishes and the solution of the varia-
tional equations is straightforward. With external fields the
W(roMoz):kZl 7:a§(r01_rk)+kzl Fa2(Toz=Tk) final quite complicated; integration can be obtained only
- - numerically. In the case thaf,(ro;,ry) scales with a posi-
tive power ofN andN is large enough; there is, however, an

+k21 Wit Wa, a(To1.T02)- (1) additional quite accurate approximation to circumvent this
N final integratior?’ It consists of the saddle point evaluation
Herer; stand for the position of the two macroii® be of the final integration with respect to,—that is, of an
distinguished from the position of the two centers-of-mass ofdditional minimization ofF(rq;,rgp) with respect ta o, as
the polymer chaing,g;). F’s are due to the interaction of the well asry,. This means that Eq5) can be written in an
chains with external fields and can be written in the form approximate form

in real and Fourier space, the form we will need later on.
Taking now the form of the self-interaction and the external
fields as in Egs(1) and(2), we obtain the following result:

2 2

2
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IV. SOLUTION OF THE VARIATIONAL EQUATIONS

EO(N):J J d3r01d3roze—ﬁfo(r01,r02),~ve—ﬁfo(rglrgz)’
17) We are now ready to solve the general variational equa-
tions for the case of two polyelectrolyte chains with two
whererg;, rg, are given as solutions of the saddle pointexternal point macroions. As we already announced, we con-
condition sider only symmetric solutions for whickt =a3=a?, but in
general withrg#rq,. This symmetrization will be applied
to the results derived below in their final form.
A little straightforward algebra then leads to the follow-

] ] o ] ing form of the total variational free energy, E4.6):
Thus we obtain a simple explicit and accurate estimate for

IFo(roro2)  9Fo(Tgr o)
g, gy

(18

the free energy of two self-interacting polyelectrolyte chains , (gMN2%2 (V2 | xa
in an external field: viz.,F= —kTZo(N)~Fo(re;,re,). In BFaAr—r')=—————f| —|r=r ")
what follows we will always assume that all the solutions of
the variational equations have to be symmetric with respect €gN?
to the two chains. There is no reason on the pair-potential BWi= Ta f1(0xa),
level to assume otherwise. 5
. Since the solution of varlatlona! equations is in general Wy o (1r')= 4€gN £, 1 r—r'| xal. (19
quite complicated, we give here a little preview of what ex- 192 a

actly we will be calculating in what follows. We will show
thatgrosso moddhe solution of the variational problem has
two branches depending on the relative magnitudes of th
interaction with external fields and the self-interaction and % usinuye*"uz
mutual interaction of the chains. The two branches of the  fa(y.t)= fo Ty )
solution are the following.

€B=e§/47-reeokT was introduced above as the Bjerrum
L}ength. Also, we defined the following function:

du

(i) What we call astrong-coupling branchwhich corre- T, y
sponds ta/?(ro;) >0 in the variational equatiofb) and thus = @e}‘y 2eV'—e VErfc —\/——'f\/K
to the dominance of the interactions of the chains with the 23\

external macroion fields, the self-interaction and mutual in- y
teraction of the chains being a small perturbation. The —eytErfc(—H\/X
strong-coupling branch furthermore bifurcates into two dif- 2\

ferent subbranches depending on the solution of the addiyhere Erfck) is the standard complementary error function.
tional minimization implied by Eq(18): in theweakly paired  on the other hand, the variational equatid®) can be ob-
subbranch the chains are associated each with its own grafiined just as straightforwardly as

ing macroion and in thestrongly paired subbranch both

: (20

chains share the two macroions on the average. ,BLW(r Foo)
(i) And what we term aveak-coupling branctwhere gaz 010
{2(r0)<0 and thus corresponds to the case where the self- 2
interaction and mutual interaction of the chain are dominant _ €N 232’ V2 B 7a
and the interactions with external macroion fields are pertur- T mad k=1 g a for™ T E
bative. Couplingin both cases thus refers to coupling with
the external macroion field. |ro1—rod
In both cases we can in general observe some bridging —2Ng ka|—Ng(0ka)|. (22)

effects, but they are several orders of magnitude stronger in
the first case. Nevertheless, they are always present to sore Similar equation could be obtained also for
extent. After this introductory survey of the nature of the B(d/da5)W(ro1,ro) except thatroy on the right-hand side
solutions of the variational problem, we are ready to find(RHS) would be turned int@,,. The following new function

these solutions explicitly. was defined above
A note on the grafting of the chain is in order at this 9
point. Both in theweakly pairedas well as thestrongly g(y,t)z—ﬁfx(y,t)h:l. (22

paired states the electrostatic adsorption energy more than

the grafting itself determines the statistics of the chain. GraftWhat the variational equatiof2l) really asserts is which

ing the chains, by fixing, e.gr;(0) to be at the surface of the terms are important in determining the statistical conforma-
macroion, would change none of the conclusions reachetion of the chain: i.e.a? in our case. The first term on the
below, provided of course that the size of the macroions iSRHS of Eq.(21) is due to the interactions with the macro-
small compared to the size of the chains and that we haviens, the second one is due to the interactions between the
only one chain associated with each of the macroions. Itwo chains, and the last one is the self-interaction of the
would, however, introduce some serious complications intahains. The conformation of the chain as describedbis

our formalism, thus obscuring its straightforward interpreta-thus determined by the relative magnitudes of these three
tion. terms.
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The properties of the solution of the variational equationwhile the corresponding free energy has the form
(21) first of all depend crucially on the sign of the RHS of

Eq. (21), thus on the fact whetheF is positive or negative. ¢sN

The sign of this term tells for each value of the separation BFo=2BF(|r1=r2]) = =y 27Mm | £, %2a I
between the macroions whether it is the interactions with the

external fields or the self-interactions of the chain that deter- Ka

mine the statistical conformation of the chain. iy 5 —6Nf(0,ka);. (24

In view of the form of the variational ansatz, Hd), the
positive sign corresponds to a general confinement of th&he form of the dependencg,(|r,—r,|) is of course given
chain if compared to the case with no interactions. We willimplicitely via the dependence df anda. Once again, the
refer to the ensuing interactions between the two macroionshain here is bound to both macroions and its statistical
mediated by the polyelectrolyte chain as #teong-coupling  properties are dominated by the interaction with the charges
limit. In the opposite case the chain is expanded if comparedn the macroions. One would expect that the polyelectrolyte
to the case with no interactions, and we will refer to themediated interactions between the macroions would be stron-
ensuing polyelectrolyte mediated interactions as weak- gest in this case. Obviously, for large enough—r,| the
coupling limit. Both terms will be explained further below. RHS of Eq.(23) can become negative, going first through
The final closure for this system of variational equations iszero. This is due to the fact thgfy,t) is a decaying function
provided by the relation betweehanda, Eq. (6). of y. At this point the above solution ceases to be stable and

Since in this model the external macroions break theve have a transition from the strongly paired to weakly
translational symmetry of the system, we apply also thepaired branch of the strong-coupling limit. The transition de-
minimization condition, Eq(18), with respect tay, as well  pends on the macroion parameters such as the magnitude of
asrgy, in order to avoid the final complicated integral over their charges as well as the length of the chains. In this sense
the centers-of-mass of the two polyelectrolyte chains. Thist represents a finite-siz@f the chaing effect.
minimization introduces additional features of the solutions  The weakly paired configuration is characterizedrly
of the variational equations. Taking into account the=r, andrq,=r, and is the stable branch at larger separations
Gaussian-like form of the functiohy(y,t), we realize that between the macroions. Here the variational equatiory for
there are in fact two different symmetric solutions to Eq.becomes
(18): (i) rg;=rq1 andrg,=r5,, i.e., each of the chain remains

associated with its grafting macroion, ard) rg;=rp, 3 , €N ., Ka V2 Ka
=(r,+r1,), i.e., each chain is shared by the two macroions 2% ~ 53| 2 M|9 O'E T |f1 2 s
symmetrically.

Here we assumed that the first chain is grafted to the first [ri—r,
macroion while the second one is grafted to the second mac- _ZNQ( —Ng(0ka) (. (29

roion. We refer to the configuration of the polyelectrolye
chains in the first case ageakly pairedand in the second The corresponding free energy in this case can be obtained as
case asstrongly paired The terms are self-explanatory: in

the first two cases the chain is confined to one of the macro- i Ka
ions, whereas in the second case it is confined or bound by 870~ BFa|ri=ral) = 77_ 2%°M 0:5
both of them. A schematic representation of the solutions of

fq

the variational equations is presented in Fig. 1. ol xa Iri—rs)
+f1 rl_rz e Nfl( a ,Ka)
V. STRONG-COUPLING LIMIT V2
Once againstrong couplingmeans that external fields ;
dominate the statistical configuration of the chain and thus —2NTy(0) - (26)

£?>0. In this domain of the parameter space the effect of the
interactions of the polyelectrolyte chain with the macroions,The most important term to determine the conformation of
the term proportional tt in Eq. (21), determines the overall the chain is the interaction with the single macroion and is
configuration of the chain. thus only weakly dependent on the separation between them.

The strong-coupling limit entails, however, two different These are the first and last terms on the RHS of(Eg). The
polyelectrolyte equilibrium states as discussed above, deseparation-dependent terms act only as a perturbation to
pending on the minimization with respect tg;, ro,: the  these terms. It is thus to be expected that the polyelectrolyte
first state, stable for small values of the separation betweemediated interactions will be much weaker in this case.

the macroions, is due to thetrong-pairingconfiguration of Also in order to get thenteraction free energy in the
the chain withr o, =rq,=3(r,+r,). The variational equation weakly paired configuration one needs in addition to subtract
for £ in this case reads the terms that do not depend on the separation between the
macroions from the total free energy. This is the standard
§ 2B BN 252 Q _ _ way to get the interaction free energy. Again, the form of the
g Mg rl r2 ’ 3Ng(O,Ka) ’ . . . .. .
2a dependencer,(|r,—r,|) is given implicitely via the depen-

dence of¢ anda.
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The form of the solution of Eq$17) and(25) as well as 2000
the corresponding polyelectrolyte-mediated interaction free
energy is presented in Fig. 2. We see that at small enough
separations the chain is in the strongly paired configuration, ;44
being confined symmetrically by both macroions. In this re-
gime the external field trying to confine the chain to both % 500
macroions wins over the chain entropy that is expanding the
chain. The entropy of the parts of the chain spanning the
region between the macroions is quite low. Its size, as de-  guol
scribed by a, in this case depends monotonically on
the separation between the macroions that are effectively -1000
stretching it.

At the instability point, reached at a well-defined value
of the separation between the macroions, the chain entropy 100F y T T T
scores a partial victory over the interactions with the macro-
ions forcing the chain to remain close to the macroion to
which it is grafted. At this transition the chain basically re-
laxes the low-entropy configurations of its parts confined be-
tween both macroions by snapping back to the macroion to <
which it is grafted. After that the size of the chain is basically  °
determined solely through the interactions of the chain with
its grafting macroion and remains constant with separation
between the macroions. These conclusions reached on the
basis of the two chain variational approach are very similar
to the existing simulation dat&for one chain in the field of
two macroions.

Th!s s.cenarlo of chain conformations is Clearly, !IIUS' FIG. 2. BF, anda in the strong-coupling limit. The upper graph shows the
trated in Figs. 2 and 3 where one can follow the transition ofyependence g8, for M =100 for N=10 (losengg, 30 (squarg, and 100
the chain from the strongly paired to the weakly paired con-circle) at 1 mM on the separation between the macroipps-r,|. The
figuration via the changes afas a function of the separation Ipwer graph shows the _dependence of the size of the ehamthe separa-
between the macroions for two different values of the ionic:'r?n bet\_/veen the macroions fpr the same valu.es of parameters. T_he length of

e chainN obviously determines the separation between macroions where
strength of the univalent salt solution: viz., 1 and 60 mM.the snapping of the chain between the strongly paired and weakly paired
Clearly, the overall effect of the salt is to quench the magni-states occurs. In the strongly paired configuration we have a well-developed

P : : egime of attractive bridging interactions, leading to a an effective screened
tude of the bridging interaction. We note about one order 0]Eioulomb repulsion in the weakly paired regime. In all caéesl0. The

magnitude difference in the strength of the bridging attracnoid line represents the pure Debye-eKel interactions between the mac-
tion at both salt activities. The increase in salt activity alsoroions.

guenches the difference between the weakly paired and

strongly paired configurations. If we compare the radius of

gyration of the chairflower graphs in Figs. 2 and 3we see snapped back to the grafting macroion and simply renormal-

that at higher salt the separation between the macroions hadzgd its charge.

smaller effect on the size of the chain. There is one interesting remark that we can make here.
The ensuing chain-mediated interaction free energy folGurovitch and Sari8 studied polyelectrolyte adsorption of a

lows closely the equilibrium configuration of the chain be- Single chain to &point) charged macroion. Their case thus

tween the macroions. For a strongly paired chain the intercorrespond to a weakly paired branch at infinite separation

action free energy shows a pronounced attractivdetween the macroions in our terminology, which would cor-

contribution stemming from the couplifg X N term in Eq.  respond to Eq(25) with [r;—r,|—c, leading to

1500

O

T

(24). At the point where the chain snaps from the strongly PN a
paired to the weakly paired configuration there is also a cor- —gzzig 2%°Mg| 0,— | —Ng(0,xa) |. (27
responding jump in the free energy due to much-less- ma V2

pronounced chain-mediated interactions. It is interesting t@learly, in the vanishing salt limika— 0, which is in fact
analyze the asymptotic behavior of the interaction free enthe case treated in Ref. 28, the polyelectrolyte chain can
ergy, Eq.(26), in the weakly paired branch of the solution. adsorb until its chargéor the number of monomersde-
Expandingf,(y,t) for large values o/, we see that all the comes equal tt=2%?M; there is thus maximal overcharg-
chain-dependent parts of the free energy finally just renoring in the amount of 2°~2.83, which is indeed very close
malize the direct Debye—Htkel interactions between the to the value derived by them by a completely different
macroions. Thus asymptotically instead of a Debyeekéli  method—viz., 15/6-2.5. Though the approach of these au-
interaction of strength proportional #2, we simply end up  thors has been criticized,our results are more then consis-
with its strength being proportional td{— N)2. The chain tent with theirs. More could be said on polyelectrolyte ad-
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150F ficult to quantify in scaling terms, unless the effect of the

macroions is thoroughly negligible, which is not the situation
we are trying to investigate. Since here the effect of the
macroions is small, the polyelectrolyte chains can never be
strongly paired by both macroions. We thus remain solely
with the weakly paired configuration of the chains due to the
grafting to the macroions. The solution of the variational
equation(18) thus only has one branch in this case and is

100~
50

= -

a ©

S50

-100- given by
150k
3 ¢sN [ri—rol
—_p2__° _
2§ 71_aa{ZNg( a ,ka | +Ng(0,xa)
w ST S e S
100 T ! A o OKa X > a
- - — — —Iri=ral,—] |-
90 g v g al|'t "2 s
80 -1

(28)

Clearly, this equation is obtained by the substitutibri
from Eq. (18). This transformation should be taken into ac-
count also in Eq(6), leading to

70+ -

a[A)

60— =1

40l .

30 [5es000009f ) f P i a’

1, [¢PN

2v3

(29

50 100 150 200 250 300 a 3§
Iry -1, 1 [A] . . .
where now.L' (x) = 1/x— cotx. The interaction with the mac-

FIG. 3. BF, anda in the strong-coupling limit. The upper graph shows the roion, theM term in Eq.(28), can modify the value of the
dependence oBF, for M=100 for N=10, 30, 100 at 60 mM on the sjze of the chain, but it has no effect anymore on the stability

separation between the macroidng—r|. The lower graph shows the de- ¢ yho solution. The numerical solutions to E88) are pre-
pendence of the size of the chaion the separation between the macroions

for the same values of parameters. The bold line represents the pure Deby&ented in Figs. 4 and 5. Clearly, the size of the polyelectro-
Huckel interactions between the macroions. lyte chain in this case shows no discontinuities, though it is
still, to a lesser extent than before, effected by the positions
of the two macroions. The weak-coupling term thus seems
appropriate for the behavior of the chain in this region of the
parameter space.

The free energy is now given by an equation similar to

sorption and overchargird,but we will focus here strictly
on the interaction: i.e., bridging aspects of the problem.

VI. WEAK-COUPLING LIMIT Eq. (26), but with the chang&— i well taken into account
In this case the effect of electrostatic self-interaction ofiM 2([f1=T2l). It leads to the following result:

the chain, the term proportional % in Eq. (18), determines ZON

the overall configuration of the chain. If the effect of the sin—4—

external fields would be indeed negligible, we have shownin g7 =6 log +3¢%Na?

a previous publicatictt that the electrostatic interactions @

would stiffen up the chain and give it a rodlike appearance 2

quantified by the scaling~N. We expect that even with

external fields originating at the macroions the chain will _€B_N 2521 £.1 0 Ka +f Q r

essentially assume this type of extended configurations in " va ' '

this limit, modified by the perturbative effect of both macro-

ions. Simulations of single-chain adsorptidare completely Ka AN [ri—ro| )

consistent with this picture since for lardjeprotruding rod- Tl | TN T

like tails are observed that correspond to electrostatically

stiffened portions of the chain. Calculations of Nguyen and

Shklovskif® also lead to the same qualitative picture of chain —2N fl(o"‘a)] , (30

adsorption in this limit. Again, here we are not interested in

adsorptionper se but rather in the bridging effects in inter- again because the solution of the variational equations here

action between the macroions, so we will skip the detailedemains on a single branch all the time, showing no jump

comparison of our work with polyelectrolyte adsorption from one stable branch to another offenapping” of the

studies. chain. The free energy shows no discontinuities either,
With the external fields present the stiffening of thethough it still depends on the separation between macroions.

chain depends on the details—i.e., the strength of the term This state of affairs introduces new features in the

proportional toM in the variational equatiofil8) and is dif-  polyelectrolyte-mediated interactions. First of all, there is a
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FIG. 4. BF, anda in the weak-coupling limit foM =40 andN =50, 20, 10 FIG. 5. BF, anda in the weak-coupling limit foM =40 andN =50, 20, 10

at 1 mM. There exists only a weakly paired state in this case and the effe(f'%]tcf 60 ml;/l.hCIearIy, _aga}i_nidtheTﬁvera_ll effeﬁt Of.éhe Isl;'il_tdi; to quench the”
of the external fields of the macroions is much less pronounced then in thEECts of the macroion fields. There is weak residual bridging at very smal

strong coupling limit. The length of the chaM determines primarily the separa;]tlior_\ now. notke“ the sc”ale 0]; _the in}eractions energy, Wr?iCh gc_)les
steric repulsion effect due to the interpenetration of stiffened grafted chainsSMethly into a weak “corona” repulsion at larger separations. The details

the “coronas” of both macroions, on close approach. The inset shows thé,)f both the residual bridging as well as “corona” repulsions depend on the

residual very-weak-coupling interaction at large separations between madlues ofM andN. The bold line represents the pure Debyeekal inter-

roions with N=100. The size of the chain tends to grow slightly on ap- actions between the macroions.
proach of the macroions because of the interpenetration of the “coronas” of
both macroions. The bold line represents the pure Debyekeliinterac-

tions between the macroions. source, is of course strongly dependent on the separations
between the macroions and is in general stronger for smaller
separations. Clearly, the weak-coupling interaction in the
clearly discernible(see Fig. 4 repulsionat smaller separa- case of large salt resembles much more “sticky macroions”
tions. It is due to the interpenetrating “coronas,” i.e., €X- than(relatively long-range bridging interaction.
tended configurations of the grafted chains, on approach of |n the weak-coupling limit there is thus an additional
the macroions. If there would be many chains grafted to botheature stemming from the polyelectrolyte mediated interac-
macroions, this incipient repulsion would develop into a full- tions which is due to “coronal” interpenetration and marks
blown brush repulsion regime. Since we have only one chaifthe incipient brush repulsion that would be developed fully if

per macroion, the effect of “coronal” interpenetration is more chains were grafted to each macroions. Tleak
rather weak, but nevertheless clearly discernible. Its ranggridging attraction in this case is overall small and is in

depends on the size of the chainas well as the amount of constant competition with “coronal” interpenetration inter-
salt which regulates the overall extension of the chaingctions.

Figure 5 clearly shows that salt quenches the “coronal”
repulsion.

It is only at larger separationsee the inset of Fig.)4
that residual, indeed very weak coupling, is finally discerned. = The polyelectrolyte bridging interaction analyzed here is
The electrostatically extended chains can still make wealobviously very rich in its features and depends crucially on
bridges to the other macroions, but since this can happethe region of the parameter space under investigation. We
only at sufficiently large separations, the ensuing bridging ishowed that attractive bridging interactions effectively come
much attenuated. On adding the salt this effect is displaceth two varieties: the strong coupling, where interactions be-
towards smaller separations because the extent of the chaintiseen the chains and the macroions are dominant, and the
diminished by the salt as well. For larger ionic strengths weweak coupling, where self-interactions of the chains are
are thus left with weak coupling at smaller separatiGee  dominant. Bridging interaction can be obtained in both cases
Fig. 5, where it is nevertheless stronger than in small salbut is a couple of orders of magnitude larger in gi®ng-
(compare again inset to Fig).4Bridging, no matter what its coupling limit. It the weak-couplinglimit the attractive

VII. DISCUSSION
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bridging interactions are overwhelmed by the incipient eleclevel where all the Debye—Hitel parameters would be de-
trostatic repulsions between the overlapping polyelectrolyteermined self-consistently. We leave this exercise for future
“coronas” as well. In both cases, however, the effectivework.

polyelectrolyte-mediated interaction potential is strongly  Another important omission of our method is the size of
nonmonotonic and shows pronounced variation with respeghe macroions that does not feature explicitly in our formu-
to the length of the pplyelectrolyte _chgins anq the screeningqiion. The finite size of the chain in weakly paired or
length of the underlying electrostatic interactions. strongly paired configuration clearly showed by our numeri-

k;ll'he Va;}'?t;lo;j'al f(:rtrﬂulgtlop 0]; the bndglnghm;eractmn clal resultssee the lower graphs in Figs. 2 andi8thus not
problem, which Ties at the basis of our approach, nas Severay o 1, e finite size of the adsorbing macroions as in more
advantages as well as drawbacks. The main feature of the . . = . 1593 . .
. . . o realistic simulation$>?®but is an entropy—energy competi-
formalism is that it allows for the transition between the

strong pairing and weak pairing states of the polyelectrolytéion effect: high adsorption energy versus low configura-

chains which is clearly a finite-size effect and would thus belional entropy in the weakly paired state, leading to the finite

missed on the ground-state dominance level. The latter hadZ€ Of the weakly paired state even with a point adsorbing
been used successfully for the polyelectrolyte-mediated inmacroion. The omission of the finite size of the macroion
teractions between macroscopic surfaces with interveningends to overestimate the polyelectrolyte-mediated interac-
long polyelectrolyte chains*6 Another feature of the varia- tions and underestimate the size of the chain in the weakly
tional formulation is that it can describe the snapping of thepaired as well as strongly paired configurations. This type of
chain at large enough macroion separations which is thénite-size effects can be straightforwardly incorporated into
most important feature of a finite chain size effect. We needhe statistics of free, noninteracting chaifisgut would be

to reiterate again that this phenomenon is absent in thanfortunately difficult to incorporate into the Feynman-—
ground-state dominance ansatz. The snapping of the chaileinert variational method and were thus ignored in our
from the configuration where it is partitioned between bothformulation. Alternative approaches would thus have to be
macroions to one where it is adsorbed to a single one is ofgnsidered?

course due to an interplay and balance between chain adsorp-  a; this stage it does not seem reasonable to compare the

tion energy, chain self-interaction energy, and Conflgur""t'on"j%econd virial coefficient derived from our calculation of the

entropy of the chain. The balance depends on the size of thge, ;e pair interactions with the experiment on NCPs.

chain and the separation between the macroions and Ieads_H;] . .
o . . ere would be just too many adjustments that one would
an abrupt transition between the two configurations that has a

well-discerned imprint also on the poneIectrolyte—mediatedhave to put in by hand, but that would have a crucial efiect

interaction between the macroions. In general, one seed! the ensuing numerical results: the effective charge of

bridging only for chain cofigurations where it is partitioned the macroion due to nonlinear Poisson—Boltzmann effect,
by the two macroions symmetricaly, i.e., in what we dubbedhe effective charge of the chains which depends strongly on
the strong-pairing configuration. the local ionic equilibrium of the dissociable amino acid
The attractive bridging interaction is typicaly about 100 9roups, the effective length of the chains that are free enough
times stronger in the strong-coupling limit if compared to itsto behave as flexible polyelectrolytes, etc. Nevertheless, if
weak-coupling counterparfiwhence the designation of the one chooses to ignore all these additional complications, the
two limiting cases This is intuitively quite easy to grasp, virial coefficient in the strong-coupling limit comes out al-
since one can expect strong coupling to emerge only wheways monotonicallfdecreasingdependent on the screening
the interactions between the chain and the macroions domiength: i.e., ionic strength. No nonmonotonic effects, of the
nate the statistical properties of the system. If however theype that feature so prominently in experimental restltme
dominant interactions in the system are self-interactions oéver seen for any reasonable values of paraméiers the
the chains, the polyelectrolytes clearly mediate only insigcharges on the macroions, the length of the chain, the
nificantly the interactions between the macroions. In thischarges on the chainBasing our conclusion on the analysis
case a much more important feature of the interaction is thgyesented above, we are inclined to believe that the polyelec-
interpenetration of the polyelectrolyte “coronas,” which can v\ te pridging itself never leads to a nonmonotonic second

in some cases lead to pronounced repulsions betwe%ﬂrial coefficient. One nevertheless has to keep in mind that

“dressed” macroions. These repusions would clearly stabi- L .
: S . P y our model calculation is based on many constraints that are
lize the macroion interactions.

The main drawback of the present analysis of the brid ot entirely realistic.
P Y 9 Our work represents an alternative formulation of the

ing interaction problem, apart from it being a purely pairwise L :
additive formulation, is the linearize@ebye—Hickel) form polyelectrolyte bridging interaction between two small mac-

of electrostatics. All nonlinear effects are thaspriori ex- roions on the two-particle level. The finite-size effects of the

cluded. On this level the main effect of the salt is to attenuat&hain length make obviously a strong imprint on the bridging

the bridging interaction as well as the repulsive interactiorinteraction. These effects have not been studied previously
between the polyelectrolyte “coronas.” In this respect theanalytically and are missed by the more popular ground-state
variational approach is inferior to the ground-state domi-dominance mean-field approach. In this respect we believe
nance ansatz. One possible way out would be to formulateur work adds an important feature to our understanding of
also the electrostatic part of the problem on a variationathe phenomenon of polymer-mediated interactions.
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